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Abstract

In this paper, we propose a symmetric variational formulation for the eigenmode computation of a free–free elastic

tank partially filled with an incompressible inviscid liquid in the presence of a gravity field. The originality of this model

is to take into account the strong coupling between the sloshing of the liquid free surface and the hydroelastic

deformations of the tank. We will show that this allows the rigid body modes of the system to be predicted correctly.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the aerospace field, the study of free structures containing internal fluids is of prime importance, for instance, to

predict the in-flight stability of aircrafts with auxiliary tanks or to control the trajectory of liquid propelled launch

vehicles (Abramson, 1966; Mo.ıseyev and Rumyantsev, 1968). Several symmetric formulations have been proposed to

compute the linear vibrations of elastic tanks partially filled with incompressible inviscid liquids. Some of them account

for the sloshing of the liquid free surface with an approximate model for the sloshing wall effect due to gravity (Tong,

1966; Ohayon and Valid, 1984). However, in many industrial applications, incompressible hydroelastic (added-mass)

models are used, neglecting the gravity potential energy of the fluid and therefore the sloshing effect. The decoupling of

the two phenomena is valid, unless the first coupled eigenfrequencies of the fluid–structure system are too close to the

sloshing eigenfrequencies; this may occur for highly flexible tanks but also for free–free systems (since the first

eigenmodes are zero-frequency rigid body modes).

In order to take into account the possible coupling between sloshing modes and incompressible hydroelastic modes

without gravity, a precise analysis of the linearized problem has been carried out by Morand and Ohayon in 1995. The

so-called elastogravity stiffness operator they proposed (Morand and Ohayon, 1995) was studied in detail and

numerically validated on several applications (Schott!e and Ohayon, 2001).

The present paper is devoted toward extending this modelling to free–free fluid–structure systems, considering the

uniform translational acceleration as an apparent gravity. It will be demonstrated that, unlike previous approximate

hydroelastic models with gravity, the proposed formulation, which accounts for all the prestress and ‘‘follower force’’

terms, correctly represents the rigid body modes of the fluid–structure system and their coupling with the sloshing of the

free surface. Numerical simulations and validations are presented to highlight the advantages of this model.
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2. Free–free prestressed fluid–structure system

Herein we are interested in linear vibrations of pulsation o and we then suppose that all external excitations are

harmonic. Fig. 1 shows the system considered here.

2.1. Prestressed initial state and apparent gravity

The presence of a gravity field g and hydrostatic pressure P on the fluid–structure interface introduces a prestress in

the initial state of the system (designated by subscript 0) considered as a reference configuration for the vibrational

study. In the case of a free–free fluid–structure system, this prestressed initial configuration is a dynamic equilibrium

state (frozen at time t) accelerated by the external forces f0: The initial elastic deformation of the system will be rather

described in a reference frame attached to the accelerated system. In this reference frame, gravity is replaced by an

apparent gravity that depends on the system transport acceleration, denoted as g: Since the case of fluid–structure

systems in rotation is very specific (Coriolis forces effect etc.) and has been treated in many other studies (Greenspan,

1986), we suppose here that the rigid motion of the system due to the initial external forces is purely translational (this

means that the resultant torque of f0 with respect to the centre of gravity of the system vanishes). In this case, the

apparent gravity, denoted as gapp; is given by

gapp ¼ g � g with g ¼
ðmS þ mF Þg þ

R
Sf
0

f0 dS0

mS þ mF
; ð1Þ
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Nomenclature

G liquid free surface

Si fluid–structure interface

Sf external force application surface

OS structural domain ð@OS ¼ Si,Sf Þ
OF fluid domain ð@OF ¼ G,SiÞ
n normal vector

t linear variation of normal vector: t dS0Cn dS� n0 dS0

Du partial derivative matrix of u

f D dead loads

f F follower forces

g gravity field

rS density of the structure

rF density of the fluid

H elastic coefficient tensor of the structure

z free surface elevation

ix; iy; iz Cartesian coordinate system defined with unit vector iz colinear to g
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Fig. 1. The model studied.
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thus

gapp ¼ �

R
Sf
0

f0 dS0

mS þ mF
; ð2Þ

where mS and mF are the structure and fluid masses.

The knowledge of the apparent gravity (which does not depend on the presence of the gravity field g) allows to

position the initial fluid free surface, except in the case of a free fall ðf0 ¼ 0Þ because, when gapp ¼ 0; the position of the

liquid free surface cannot be defined. Furthermore, in the accelerated reference frame attached to the system, the

resultant of all applied loads is zero, since the inertial forces associated to the apparent gravity gapp balance the applied

loadings f0: To determine the initial elastic deformations ue
0 and then the prestress s0 in the structure, it is however

necessary to ‘‘support’’ the unconstrained system by fixing enough degrees of freedom of the structure to make it

isostatic (G!eradin and Rixen, 1997). The local equations satisfied by ue
0 and s0 are:

Div s0ðue
0Þ þ rS

0gapp ¼ 0 in OS
0 ; ð3aÞ

s0n0 ¼ f0 on Sf
0; ð3bÞ

s0n0 ¼ �P
app
0 n0 on Si

0; ð3cÞ

where P
app
0 is the fluid pressure in the reference frame attached to the system.

Let us nevertheless remark that, in the linearized theory proposed here, the geometry of the prestressed initial state is

supposed to be very close to its natural geometry (subjected to no external loads).

2.2. Linear hydroelastic vibrations with gravity

The apparent gravity being constant in space, we can apply the hydroelastic modelling with constant gravity

developed previously (Schott!e and Ohayon, 1999; Schott!e, 2001) to describe the linear fluid–structure vibrations in the

reference frame attached to the system. We recall here that, if H1ðOS
0 Þ is denoted as Cu; the variational formulation

obtained for the deformation US of the structure (with respect to the initial configuration) is

(USACu; 8dUACu; #KðUS ; dUÞ � o2MðUS ; dUÞ þ o2Cðj; dUÞ ¼ *fðdUÞ; ð4aÞ

where #K is the elastogravity operator,M the inertia of the structure, C the coupling at the fluid–structure interface, and
*f the linear form associated with the variation of prescribed forces.

Since the fluid is incompressible and inviscid, its displacements UF are irrotational at nonzero frequency and then can

be represented by a potential j such as UF ¼ rj (on a simply connected fluid domain). With C�j ¼
fjAH1ðOF

0 Þ=
R
G0

j dG0 ¼ 0g; the variational formulation for the liquid is

(jAC�j ; 8djAC�j ; Fðj; djÞ �
o2

jgappj
Sðj; djÞ þ CðUS ; djÞ ¼ 0; ð4bÞ

where F and S are the bilinear forms associated respectively with the kinetic and sloshing potential energies of the

fluid. The detailed expression of all those operators can be found in Schott!e and Ohayon (1999).

The symmetric elastogravity operator #K [for detailed analysis and properties, see Schott!e (2001)] is composed of

several bilinear forms: #K ¼ kE þ kG þ kB þ k1
S þ k2

S; where

kEðUS ; dUÞ ¼
Z
OS
0

Tr½HeðUSÞeðdUÞ� dO0; ð5aÞ

kGðUS ; dUÞ ¼
Z
OS
0

Tr½DUSs0tDdU � dO0; ð5bÞ

kBðUS ; dUÞ ¼
rF jgappj
jjG0jj

Z
Si
0

US  n0 dS0

 ! Z
Si
0

dU  n0 dS0

 !
; ð5cÞ

k1
SðU

S ; dUÞ ¼ �rF jgappj
Z
Si
0

ðiz  USÞðdU  n0Þ dS0; ð5dÞ

k2
SðU

S ; dUÞ ¼ �rF jgappj
Z
Si
0

z0tðUSÞ  dU dS0; ð5eÞ
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kE is the symmetric positive bilinear form related to the elastic stiffness of the structure, kG the symmetric bilinear

form representing the geometric stiffness due to the prestress s0 in the structure in the initial state, kB the symmetric

positive bilinear form associated with a quasi-static effect of a liquid free surface elevation, and kS ¼ k1
S þ k2

S
the symmetric bilinear form related to the ‘‘follower force’’ property of the liquid pressure on the fluid–structure

interface.

2.3. Prescribed external follower force effect

We distinguish here two kinds of external forces: the ‘‘dead loads’’ f D; and the follower forces f F supposed colinear

to the normal vector n: The linearized variation of external loads *fðdUÞ appearing in the right-hand side member of

Eq. (4a) is then proportional to

f dS� f0 dS0 ¼ *f D dS0 þ *f F n0 dS0 þ jf F
0 jtðUSÞ dS0; ð6Þ

where *f D ¼ f D � f D
0 and *f F ¼ jf F j � jf F

0 j: The linear variation of the normal vector n; denoted as t; is a function of US :
In the case of prescribed follower forces, we then have to add a stiffness term kF to the elastogravity operator, given by

kF ðUS ; dUÞ ¼ �
Z
Sf
0

jf F
0 jtðUSÞ  dU dS0; ð7Þ

and to replace the right-hand-side member with

*fðdUÞ ¼
Z
Sf
0

ð *f D þ *f F n0Þ  dU dS0: ð8Þ

The vibrations of the coupled system are free if *fðdUÞ � 0; which is strictly equivalent to

f D ¼ f D
0 and jf F j ¼ jf F

0 j: ð9Þ

2.3.1. Symmetry of operator kF

First of all, let us explicitly define t in term of US using the oriented surface transformation formula:

n dS ¼ detðF ÞtF�1n0 dS0 with F ¼ Id þDUS : ð10Þ

Introducing this expression in the definition of tðUSÞ; we find after linearization

tðUSÞ ¼ divðUSÞn0 � tðDUSÞn0; ð11Þ

and then kF can be written as

kF ðUS ; dUÞ ¼
Z
Sf
0

jf F
0 jððDUSÞdU � divðUSÞdUÞ  n0 dS0: ð12Þ

To study the symmetry of kF ; we evaluate the term kF ðU ;V Þ � kF ðV ;UÞ:

kF ðV ;UÞ � kF ðU ;V Þ ¼
Z
Sf
0

jf F
0 jrotðV4UÞ  n0 dS0

¼
Z
@Sf

0

jf F
0 jðV4UÞ  dl �

Z
Sf
0

ðgradjf F
0 j4ðV4UÞÞ  n0 dS0: ð13Þ

To enforce the vanishing of this expression, it is sufficient that

(i) on the one hand, jf F
0 j is constant on Sf

0 ðgradjf F
0 j � 0Þ;

(ii) on the other hand, either Sf
0 is a closed surface ð@Sf

0 ¼ 0Þ or the displacements of the structure are known on @Sf
0

(dU ; cinematically admissible, is then null on @Sf
0). However, for free–free systems, this second option does not

exist.

Both these conditions are verified, for instance, in case of a pressurized tank since jf F
0 j is the pressure of the gas,

supposed to be constant in the gas volume and applied on the closed inner surface of the tank.

In the general case, kF is nonsymmetric, and Hibbitt has proposed using a symmetric formulation instead: kS
F ¼

1=2ðkF þ tkF Þ to preserve the conservative property of the system (Hibbitt, 1979). This approximation is also used by

Mohan (1997). Therefore, we suppose in the following that kF is symmetric.
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3. Rigid body modes of a free–free fluid–structure system

The rigid body modes of the free fluid–structure system are solutions of the following equations:

8ðdU ; djÞAðCu;C
�
jÞ; KðUS ; dUÞ ¼ 0 and Fðj; djÞ ¼ �CðUS ; djÞ with

Z
G0

j dG0 ¼ 0: ð14Þ

We are then interested in determining the kernel of the stiffness operator K ¼ kE þ kG þ kB þ k1
S þ k2

S þ kF ; where
these different operators are defined by relations (5). Instead of doing a direct computation, we shall first try to verify

whether the six classical rigid body modes UR (the three translations and the three rotations) belong or not to this space.

In this aim, we compute the deformation energy generated by K for these 6 displacements UR; defined by EKðURÞ ¼
1
2
KðUR;URÞ:

3.1. Rigid body translational motions

For a translational motion, UR ¼ t with tAfix; iy; izg and

EkE
ðtÞ ¼ 0; EkG

ðtÞ ¼ 0; EkF
ðtÞ ¼ 0; Ek2S

ðtÞ ¼ 0;

EkB
ðtÞ ¼

rF jgappj
2jjG0jj

t 
Z
Si
0

n0 dS0

 !2

; Ek1S
ðrÞ ¼ �

rF jgappj
2

ðiz  tÞ t 
Z
Si
0

n0 dS0

 !
:

By using the relationZ
Si
0

n0 dS0 � jjG0jjiz ¼
Z
Si
0
,G0

n0 dS0 ¼ 0; ð15Þ

we show that EKðtÞ ¼ EkE
ðtÞ þ EkF

ðtÞ þ EkG
ðtÞ þ EkB

ðtÞ þ Ek1S
ðtÞ þ Ek2S

ðtÞ ¼ 0: The translational motions are then rigid
body modes for a free fluid–structure system in presence of gravity.

3.2. Rigid body rotational motions

A rotational motion is defined by a rotational vector y and a centre of rotation O: UR ¼ y4OM0 with yAfix; iy; izg;
also denoted as UR ¼ YOM0; where Y is the antisymmetric matrix associated to this rotation.

3.2.1. Computation of EkE
ðURÞ

We have

EkE
ðURÞ ¼

1

2

Z
OS
0

Tr½CeðYOM0ÞeðYOM0Þ� dO0: ð16Þ

By using the following relation:

eX ðYOM0Þ ¼
1

2
ðDðYOM0Þ þ tDðYOM0ÞÞ ¼

1

2
ðYþ tYÞ ¼ 0; ð17Þ

we simplify the previous expression and obtain

EkE
ðURÞ ¼ 0: ð18Þ

3.2.2. Computation of EkG
ðURÞ

Using the Green formula, we integrate the expression of EkG
ðURÞ and obtain

EkG
ðURÞ ¼

1

2

Z
OS
0

Tr½DURs0tDUR� dO0

¼
1

2

Z
OS
0

ðdivðtðDURs0ÞdURÞ �DivðDURs0Þ  URÞ dO0

¼
1

2

Z
@S0

DURs0n0  UR dS0 �
1

2

Z
OS
0

DivðDURs0Þ  UR dO0: ð19Þ
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We then use the local equations (3) and the fact that DUR ¼ Y to simplify this expression, as follow:

EkG
ðURÞ ¼ �

1

2

Z
Si
0

P
app
0 ðYn0Þ  UR dS0 þ

1

2

Z
Sf
0

ðYf0Þ  UR dS0 þ
1

2

Z
OS
0

rS
0 ðYgappÞ  UR dO0: ð20Þ

The centre of gravity GS
0 of the structure in its initial configuration is finally introduced to simplify this

expression:

EkG
ðURÞ ¼

1

2

Z
Si
0

P
app
0 n0  ðy4ðy4OM0ÞÞ dS0 �

1

2

Z
Sf
0

f0  ðy4ðy4OM0ÞÞ dS0 �
mS

2
gapp  ðy4ðy4OGS

0 Þ: ð21Þ

To give a physical interpretation of this relation, we introduce the finite rotation UR whose relation with UR is given by

(see Fig. 2):

UR ¼ U ð1Þ þ U ð2Þ with U ð1Þ ¼ y4OM0 ¼ UR and U ð2Þ ¼ y4ðy4OM0Þ: ð22Þ

The energy EkG
ðURÞ is opposite to the work of the prestress forces (hydrostatic pressure, external forces and weight),

considered as ‘‘dead loads’’, during the finite rotation UR (Morand and Ohayon, 1975).

3.2.3. Computation of Ek2S
ðURÞ

We use here the following expression of k2
S:

Ek2S
ðURÞ ¼

1

2

Z
Si
0

P
app
0 t  UR dS0: ð23Þ

Since for a rotation of vector y the value of t is

t dS0 ¼ y4n0 dS0 þ ðy  n0Þy dS0; ð24Þ

the previous expression gives

Ek2S
ðURÞ ¼

1

2

Z
Si
0

P
app
0 ðy4n0Þ  ðy4OM0Þ dS0 þ

1

2

Z
Si
0

P
app
0 ðy  n0Þðy  ðy4OM0Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0

Þ dS0: ð25Þ

Finally, we find

Ek2S
ðURÞ ¼ �

1

2

Z
Si
0

P
app
0 n0  ðy4ðy4OM0ÞÞ dS0: ð26Þ

Let us remark that the deformation energy associated with k2
S exactly compensates for the hydrostatic pressure

component of the energy associated with kG: This result seems in good agreement with physics since the aim of the

operator k2
S is to take the follower force effect into account.

3.2.4. Computation of EkF
ðURÞ

A similar demonstration in this case gives

EkF
ðURÞ ¼

1

2

Z
Sf
0

jf F
0 jn0  ðy4ðy4OM0ÞÞ dS0: ð27Þ
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Fig. 2. Infinitesimal and finite rotations.

J.-S. Schott!e, R. Ohayon / Journal of Fluids and Structures 18 (2003) 215–226220



3.2.5. Computation of EkB
ðURÞ

Energy EkB
ðURÞ has the following expression:

EkB
ðURÞ ¼

rF jgj
2jjG0jj

Z
Si
0

ðy4OM0Þ  n0 dS0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðAÞ

0
B@

1
CA

2

: ð28Þ

Some vector analysis formulae are used to simplify the term denoted as ðAÞ: We obtain

ðAÞ ¼
Z
OF
0

y  rotðOM0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

dO0 þ ðiz4yÞ 
Z
G0

OM0 dG0

 !
: ð29Þ

We introduce C0; the centre of the liquid free surface (in its initial configuration), defined by jjG0jjOC0 ¼
R
G0

OM0 dG0;
and finally find for EkB

ðURÞ:

EkB
ðURÞ ¼

rF jgappj jjG0jj
2

ððiz4yÞ  OC0Þ
2: ð30Þ

3.2.6. Computation of Ek1S
ðURÞ

We can write

Ek1S
ðURÞ ¼ �

rF jgappj
2

Z
Si
0

ðOM0  ðiz4yÞÞ ððn04yÞ  OM0Þ dS0

¼ �
rF jgappj

2

Z
OF
0

divððOM0  ðy4izÞÞðy4OM0ÞÞ dO0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðAÞ

þ
Z
G0

ðOM0  ðiz4yÞÞ2 dG0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðBÞ

2
664

3
775: ð31Þ

The first term ðAÞ can be simplified to give

ðAÞ ¼ ðy4izÞ  y4
Z
OF
0

OM0 dO0

 !
: ð32Þ

If the centre of gravity GF
0 of the fluid domain in its initial configuration is introduced, this relation gives

ðAÞ ¼ �jjOF
0 jjiz  ðy4ðy4OGF

0 ÞÞ: ð33Þ

The second term ðBÞ is simplified by introducing the point C0 previously defined. Thus, we obtain

ðBÞ ¼ jjG0jjðOC0  ðiz4yÞÞ2 þ tðiz4yÞIC
G ðiz4yÞ; ð34Þ

where IC
G is the inertia tensor of the free surface G0 with respect to its centre C0; defined by

IC
G ¼

Z
G0

C0M0
tðC0M0Þ dG0: ð35Þ

Finally, the energy Ek1S
ðURÞ is written as

Ek1S
ðURÞ ¼ �

rF jgappj
2

ðjjG0jjðOC0  ðiz4yÞÞ2 þ tðiz4yÞIC
G ðiz4yÞÞ �

mF

2
gapp  ðy4ðy4OGF

0 ÞÞ: ð36Þ

3.2.7. Computation of EKðURÞ
The energy EKðURÞ is obtained by summing all the partial contributions given by Eqs. (18), (21), (26), (27), (30) and

(36):

EKðURÞ ¼ �
rF jgappj

2
tðiz4yÞIC

G ðiz4yÞ �
m

2
gapp  ðy4ðy4OG0ÞÞ �

1

2

Z
Sf
0

fD0  ðy4ðy4OM0ÞÞ dS0; ð37Þ

where G0 is the centre of gravity of the fluid–structure system in its initial configuration and m its mass.
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Using the definition of gapp; Eq. (2), we can give a final expression of this energy:

EKðURÞ ¼ �
rF jgappj

2
tðiz4yÞIC

G ðiz4yÞ þ
1

2

Z
Sf
0

jf F
0 jn0 dS0

 !
 ðy4ðy4OG0ÞÞ �

1

2

Z
Sf
0

fD0  ðy4ðy4GM0ÞÞ dS0:

ð38Þ

The term depending on follower forces f F is null if f F
0 naturally satisfies the condition of symmetry for kF (jf F

0 j constant
and Sf

0 closed surface). Otherwise, we can eliminate this term by placing the centre of rotation O on the system centre of

gravity G: On the other hand, we remark that the term depending on the dead loads f D is not cancelled.

We can now give the following conclusions.

(i) If all external loads f0 are not follower forces, the rotational movements are no longer rigid body modes for the

system. We remark that the position of the dead loads in relation to the system centre of gravity determines their

stabilizing or destabilizing effect on the system. This result was given in Kreis and Klein (1992).

(ii) If the prestresses in the initial state are only due to follower forces, additional stiffness terms kS and kF nullify the

deformation energy generated by the geometric stiffness kG : Then, the rotational movement with respect to the

gravity axis iz is still a zero-frequency rigid body mode for the system.

(iii) However, the two rotations with respect to the horizontal axes ix and iy are no longer associated with energyless

movement, because a fluid–structure system prestressed by the gravity is not invariant during such rotations: when

the structure rotates, the liquid free surface remains horizontal by the action of the gravity forces which generate

this energy.

Table 1 summarizes the contribution of each term of the stiffness operator to the deformation energy of the system.

4. Numerical examples

4.1. Test case

To illustrate this result, a test case has been studied (Fig. 3 and Table 2). The first free eigenfrequencies, obtained with

the hydroelastic modelling with gravity presented here, are shown in Table 3. The study of these results leads to the

following remarks.

(i) The x and y-translational modes have zero frequency, as predicted by the theory.

(ii) The translational and rotational modes in relation to the z-axis have quasi-zero frequencies. This error appears

because, numerically, the differences between, respectively, EkB
and Ek1S

; and E
g
kG

and Ek2S
are not exactly zero.

(iii) As expected, the rotational motions with respect to x and y axes have nonzero frequencies. These eigenmodes are

the result of a coupling between the rotation of the structure and the first fluid sloshing modes (the first sloshing

eigenfrequencies are summarized in Table 4). Fig. 4 illustrates the modal participation of the first 48 sloshing

modes to the ninth mode ð0:59 HzÞ: it highlights the coupling between the rotational movement of the structure

and principally the first and tenth sloshing modes of the fluid.

(iv) The other computed eigenfrequencies are equal to the sloshing frequencies because, in this frequency range, the

elastic modes of the structure are not yet excited.

4.2. Comparison with a benchmark

We have tried to validate this aspect of our modelling by comparison with results available in the literature. A

benchmark was proposed by Kreis and Klein (1991) to study the coupling between rotational motion of the tank and
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Table 1

Contributions to the deformation energy associated to the rigid body motions

EkE
þ E

g
kG

þ E
f F
0

kG
þ EkF

þ EkB
þ Ek1S

þ Ek2S
¼ EK

Tx or y 0 þ 0 þ 0 þ 0 þ 0 þ 0 þ 0 ¼ 0

Tz 0 þ 0 þ 0 þ 0 þ A1 þ �A1 þ 0 ¼ 0

Rz 0 þ A2 þ A3 þ �A3 þ 0 þ 0 þ �A2 ¼ 0

Rx or y 0 þ A2 þ A3 þ �A3 þ A1 þ A4 � A1 þ �A2 ¼ A4
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sloshing of the fluid. The proposed model is illustrated by Fig. 5 and Table 5. The tank, whose walls ðbÞ except the
bottom ðaÞ are rigid, is suspended from a pivot hinge such that the only rigid body mode of the structure is the

rotational motion with respect to the horizontal axis.

Kreis and Klein’s method is specially adapted to represent the rigid mode behaviour of the system by including in the

model explicit rigid degrees of freedom. Moreover, the fluid is considered through approximations as a subsystem

coupled via a pendular motion to the structure. The results we obtain with our modelling on a three-dimensional finite

element model are in good agreement with their results: Kreis and Klein predict an eigenmode coupling the rotation of

the structure and the first sloshing mode of the fluid for a frequency of 0:99 Hz (see Fig. 6) when we find the same

eigenmode with a difference of 8% on the frequency (see Fig. 7). According to the authors’ knowledge, no experimental

measurements have been compared to the numerical simulation results published on this benchmark, and this will be

the topic of future work.
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Fig. 3. Mesh of test-case tank.

Table 2

Test case tank definition

R (m) L (m) e (mm) rS ðkg=m3Þ E (GPa) n h (m) rF ðkg=m3Þ

2.7 6.7 5.0 4450.0 81.4 0.33 4.5 1138.7

Table 3

First free hydroelastic eigenfrequencies with gravity

Mode Frequency (Hz)

1 and 2 Trans. x and y 0.0

3 and 4 Trans. z and rot. z B0.0

5 Rot. x þ sloshing 1 0.395

6 Rot. y þ sloshing 2 0.395

7 and 8 Sloshing 3 or 4 0.53

9 Rot. x þ sloshing 1 et 10 0.59

10 Rot. y þ sloshing 2 et 11 0.59

11 Sloshing 5 0.595

12 and 13 Sloshing 6 or 7 0.62

Table 4

First sloshing eigenfrequencies

Mode 1 and 2 3 and 4 5 6 and 7 8 and 9 10 and 11 12 and 13

Frequency (Hz) 0.41 0.53 0.595 0.62 0.70 0.705 0.77

J.-S. Schott!e, R. Ohayon / Journal of Fluids and Structures 18 (2003) 215–226 223



5. Conclusion

We have shown that the hydroelastic modelling with gravity presented in previous papers (Schott!e and Ohayon, 1999,

2001) can be adapted to study the particular case of free–free fluid–structure systems by replacing the gravity by an

apparent gravity depending on the system acceleration. The study of the rigid body modes has highlighted the prime

importance of distinguishing the follower forces from the dead loads in the external forces applied to the system:

depending on whether dead loads are applied or not to the system, the rotational motion with respect to the gravity axis

can or cannot be a zero-frequency rigid body mode for the system. We have also demonstrated that, due to the presence

of gravity, the rotational motions with respect to horizontal axes are not zero-frequency rigid body modes but are

coupled with the sloshing movements of the fluid free surface. Experiments are presently undertaken in order to validate

the results presented in this paper.
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Fig. 4. Sloshing modes participation to ninth free hydroelastic mode.

b

d

a

e

Fig. 5. Kreis and Klein benchmark model.

Table 5

Benchmark model definition

a (m) b (m) d (m) rF ðkg=m3Þ e (cm) rS ðkg=m3Þ E (GPa) n

1.0 0.5 1.0 1000.0 5.0 3000.0 10.0 0.3
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